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Models corresponding to L/H transition in tokamak plasmas are revisited. Values for the thickness of the meso-phase and
for the range of the control parameter in the bifurcation region are obtained. We shown that in the collisional case the
double hysteresis is absent when the control parameter is positive and there are critical values of the effective frequency
and electron diffusivity for the existence of a simple bifurcation. The influence of the impurity flux on the radial electric field
bifurcation and the time behaviour of the later on the basis of a tangent hyperbolic time-dependent ion temperature were

also studied.
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1. Introduction

Since the discovery of the H mode, the transition from
a low confinement to an improved confinement has been
observed in many fusion devices. The study of the
mechanisms that can lead to a bifurcation in the radial
electric field is very important in order to obtain
information related to the transport properties of the
plasma edge. For such transition, a critical value for the
control parameters (electron temperature, electron density
and their gradients) must exist. The transition is analyzed
through the change of the radial electric field to a more
negative value or to a more positive value of its gradient.
Among all the mechanisms able to generate the radial
electric field, the collisional bulk viscosity loss ions was
considered important. The model of Ref. [1] was improved
by introducing in the ions loss cone flux a coefficient
linear in the normalized radial electric field. The
competition between the ion loss cone flux, the collisional
bulk viscosity loss flux and the anomalous bipolar loss
was examined in details. It is shown that in a given
collisional regime the double hysteresis, which is a
characteristic feature of a bifurcation model, is not
observed when the control parameter is positive.

2. The general model

The general equation for the radial electric field
dynamics including an impurity flux is [2]:
Er & [ramom _ple _rv 1,4 more” 1)
ot g,
where “more” represent other fluxes that may contribute to
the radial electric field dynamics. Here Ti%™is the
anomalous bipolar loss in the constant-l approximation.
The latter consists in: (a) the gradient of the electric field
V E, = E/I, where | is some scale length and (b) the radial
electric field is zero in the core region, i.e. in a region

r<(a - I), where a is the minor radius (see Refs. [1,3-5]).
The L-H transition as a bifurcation in the radial electric
field was obtained as a zero-net radial current condition
applied to edge non-ambipolar flows [1]. We introduce the
dimensionless radial electric field X as:
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where T;is the temperature of ions, pgy =m; vy /eB, is
the poloidal ion gyro-radius and E, is the radial electric
field. The ion loss cone flux I}°(X) in the region
la—r|<pg(a is the minor radius) can represent the

generation of particles from Coulomb collisions that
escape into the scrape-off-layer (SOL) where they are
absorbed by the limiter and/or by the divertor plates that
balances the loss of trapped particles at the edge. A
possible expression for the ion loss cone flux, denoted
r“0(x) is defined as [1]:

r0X) = ¢, (X)exp(-X?) 3)

The alternative expression for

®)(X) is defined as (see Refs. [4, 6]):

r'°(xy, denoted by
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The anomalous bipolar loss electron flux T2%™(X) is
due to a direct edge loss by turbulent diffusion and its

expression is given as:
L™ (X) = ¢, (A =X),
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In Eq. (5) D, is the bipolar part of the electron
effective diffusivity. The expression c,(X) is defined as:

anis(qR)flv
B

a(X)=¢""n; v py F(X) = L TF(X) (6)
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F (X) is a function to be defined below, n; represents the

ion density while the parameter A, which is related to the
thermodynamic forces, is the control parameter, defined:

A=—pg Te[ne+aTe] (7
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In Eq. (7) prime denotes the radial gradient and o is a
parameter close to unity. The flux T’ ibv (X), which is the

ion bulk viscosity loss, is obtained from the general
neoclassical formula for the radial flux [2].

Particular expressions of l"ibV (X) and of the impurity flux

Cimp (X) will be defined later in specific subsections.

Fig. 1. The normalized electric field as function of the
control parameter for different values of ¢, and for fixed

valueof ¢, =0.6 andc; =1.

3. The contribution of I*V(X) and T2™(X)

e—i

We analyze the stationarity condition (% :O),

considering only the first two terms from Eq. (1) where
Filc(l)(X) is given by Eq. (3). The radial electric field then

results from the zero-net-current condition:

) =T (X) = (X)) . ®)

In the later equation y(X) is the dimensionless particle
flux. We assume that that coefficient ¢;(X)=c; +c, X
(or that F(X) arising from a bounce averaging) is linear in
the dimensionless radial electric field. Additional
constraints ¢ > 0 (to insure an inward flux when X =0)
and (c,/c3)X <1 when both ¢, and X are negative (to
insure the inward flux for all values of X)) are introduced.

The case c,=0 was considered in [1]. The
bifurcation equation is studied either by varying A with
c,/c; fixed or conversely. Obviously, no bifurcation
appears when) is kept fixed and c, =0. The equation
leads to a bifurcation only when A is varied as considered
in [1]. The behaviours of the normalized radial electric
field and particle flux as functions of A are represented in
Fig. 1 and Fig. 2 respectively, for different values of c,
and for fixed value of c¢, =0.6 andcy=1. The

casec, =0 corresponds to the model of Ref. [1] (dotted
line) for which the meso-phase (see Ref. [5]) is
0.229 with A €[1.595,1.824].

(a2)
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Fig. 2. The normalized particle flux as function of the
control parameter for different values of ¢, and for fixed

value of c, = 0.6 and c3 = 1.

For ¢, =0.2 the later is (Ak)linear:0.247 with
2 €[1.688,1.935] and for ¢, =—0.2 is (AL),., = 0.249
with 1 e [1 .488,1.737]. A difference in the thickness of

the meso-phase in the range of the control parameter is
clearly observed as the coefficient ¢, is slightly varied

with the radial electric field.

4. The contribution of I*®)(x), I (X) and
L™ (X)

We now consider a different situation involving three
mechanisms that are able to cause a bifurcation in the
electric radial field: the ion collisional bulk viscosity flux

T ibV (X) [7], the ion loss cone flux in the form given by

Eq. (4) and the anomalous bipolar loss 2™ (X) given in
Eq. (5). We consider the edge of the circular tokamak and
a positive single-ion-species as component of the main
plasma. In the collisional limit (v*i >1), the ion bulk
viscosity flux has the following expression [2]:

&k T, v, (X+X,) ©)
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In Eq. (9) X =-X, is the ambipolar electric field,
which gives a zero value to the radial ion particle flux. The
following equation is obtained using the assumptions
n;=n,=n and T, =T, =T:

32
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(v*i +X4)”2 eXp[ (v l ) X? +vie’ (10)
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Fig. 3. The normalized radial electric field Xis
represented as a function of the control parameter A

for: v,; =4, €=0.213, X, =-0.25 and d =0.05.
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Fig. 4. Even the simple bifurcations disappear
ford>0.4 and X, =0.25.

In Fig. 3 the normalized radial electric field Xis
represented as function of the control parameter A; for
this case we used the effective frequency v,; =4, the
inverse aspect ratio €=0.213, d= ZDe”Z =0.05 and

Po®pE

X, =-0.25. In the collisional case (v,; >3), the double

hysteresis, which has the same characteristic feature as in
the original model given in [3], disappears for positive
values of A. There is thus only one bifurcation for the
normalized radial electric field and for the particle flux.
For d>0.4 and X, =0.25, the simple bifurcations of

the radial electric field and of the particle flux disappear
(see Fig. 4).

5. Non-stationary case: the contribution of

Fi1°(2) (X), I (X), T (X) and T imp (X)

1

A time-behaviour of the radial electric field is
considered assuming a given time-dependency for the ion
temperature:

T;(t) = Ty; [1+ntanh 8t]= T, G(t). (1)

In Eq. (11) 8 e [5, 200]5’1 . It is also assumed that the
electron temperature does not vary in time and is given
by T, =Ty, =10°K. The poloidal ion gyro-radius becomes:

2m.kT 1/2
()= S pyt 20 (1)

with pgg =1.33x107*m.

The following parameters are used in this
model: D, =5-102m?s™", n,=10"m™, F(X)z 1,
Bp=10"'"T, gy, =10°C*m>N",
R=3m, e€=1/3, q=3. The perpendicular dielectric
related to  the i
€ =1+c? (1+2q2)/vi while q is the safety factor

V*i :21

constant poloidal  flow is

profile, ¢ is the velocity of light, v, =B/, m;n;p, is
the Alfven speed (B is the magnitude of the magnetic
field).

We consider also the following spatial profiles for the
temperature and for the number density for electrons [8]:

Te(r/a):n{l_[;f]z, m{l[]] (13)

Choosing o= 1 and r/a =0.98 and considering that
the electron temperature does not vary in time, the
complete expression for A is:

X(t): 6§(17('§)2)T0e [ﬂ]l/zG”z(t)sxﬂG”z(t) (14)

acBp To;

The dimensionless radial electric field X becomes:

1/2
X(t)= bE, (1)G (1), "-Bp[m] (s)

For the specific parameters used in our paper we
take: b ~1.55x10™*mV "and A, =3x107>.

In this section the time behaviour of the radial electric
field is considered assuming the time-dependency for the
ion temperature and using the following fluxes: Fibv (X) in
the collisional case, the anomalous bipolar loss T'2%™ (X)),
the ion loss flux and the impurity flux. The later has the
expression [9]:

X2 %
rimp(X):ri?np|:Xe 4e +8_1/2X2(p_1+p8_1/26 e j}’

0 _ kaniminiigl/zTi

imp =

T, and p=—. (16)
Z
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M is the mass number of an impurity ion, m; is the mass

number of the main ions, Z is the charge number of
impurities, f is the percent of the expelled ions of impurity

from plasma, Bz% and the other parameters are

already defined. The first term denotes an inward pinch
due to collisions with bulk ions, and the second term
shows centrifugal force; the latter can be outward. The

equation of evolution for the radial electric field becomes:
%t(t) =D,G(t)- D,E, (1)~
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The coefficients D, (k=1-5) are given as:

D.n, T T;
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Fig. 5. The evolution of the radial electric field

In Fig. 5 it is shown the evolution in time of the
solution of Eq. (17) for different parameters mand values
of 3. The initial condition is: t, =0 and X(t,)=1. The
other parameters are: P=3/10, e=1/3,
p=1.

It can be seen in Fig. 5, that the first decrease of the
radial electric field is followed by an intermediate

V*i = 2,

decreasing region before the reaching of the stationary
regime in a region of negative values. It is obvious that the
type of the heating dictates the stationary value for the
radial electric field: the absolute stationary value of the
radial electric field is increasing when ) is increasing. The
transitory regime behaves only in the time interval
te[1077,1] sec. It was also observed that the time
behaviour of the radial electric field is practically
determined mainly by the second and the last term from
Eq. (17). By the other hand the expelled impurity is not
very important in the determination of the saturation value
of the radial electric field.

6. Conclusions

The bifurcations of the normalized radial electric field
and the particle flux are obtained as a balance of a linearly
modulated ion loss cone flux and the anomalous electron
loss. Small differences in the thickness of the meso-phase
and in the range of values of the control parameter for the
normalized radial electric field and the particle flux in the
region of bifurcation were observed. The range of values
of the control parameter leading to a bifurcation is
obtained. The linear dependence of F on the radial electric
field maintains the existence of a critical value A of the
control parameter. At this value, a transition from the
branch of large flux (L-confinement) to that of small flux
(H-confinement) occurs. The disappearance of the double
hysteresis for an effective frequency v, =23 and
d=0.05 is observed in comparison with the model
studied in [3]; a simple bifurcation, however, is present.
The time behaviour of the electric field was studied for
different heating regimes and transitory regimes are found
for different heating types.
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