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Models corresponding to L/H transition in tokamak plasmas are revisited. Values for the thickness of the meso-phase and 
for the range of the control parameter in the bifurcation region are obtained. We shown that in the collisional case the 
double hysteresis is absent when the control parameter is positive and there are critical values of the effective frequency 
and electron diffusivity for the existence of a simple bifurcation. The influence of the impurity flux on the radial electric field 
bifurcation and the time behaviour of the later on the basis of a tangent hyperbolic time-dependent ion temperature were 
also studied. 
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1. Introduction 
 
Since the discovery of the H mode, the transition from 

a low confinement to an improved confinement has been 
observed in many fusion devices. The study of the 
mechanisms that can lead to a bifurcation in the radial 
electric field is very important in order to obtain 
information related to the transport properties of the 
plasma edge. For such transition, a critical value for the 
control parameters (electron temperature, electron density 
and their gradients) must exist. The transition is analyzed 
through the change of the radial electric field to a more 
negative value or to a more positive value of its gradient. 
Among all the mechanisms able to generate the radial 
electric field, the collisional bulk viscosity loss ions was 
considered important. The model of Ref. [1] was improved 
by introducing in the ions loss cone flux a coefficient 
linear in the normalized radial electric field. The 
competition between the ion loss cone flux, the collisional 
bulk viscosity loss flux and the anomalous bipolar loss 
was examined in details. It is shown that in a given 
collisional regime the double hysteresis, which is a 
characteristic feature of a bifurcation model, is not 
observed when the control parameter is positive.  

 
2. The general model 
 
The general equation for the radial electric field 

dynamics including an impurity flux is [2]: 
 

[ ]""
0

moree
t

E
imp

bv
i

lc
i

anom
ie

r +Γ−Γ−Γ−Γ=
∂
∂

−
⊥εε

  (1) 

 
where “more” represent other fluxes that may contribute to 
the radial electric field dynamics. Here anom

ie−Γ is the 
anomalous bipolar loss in the constant-l approximation. 
The latter consists in: (a) the gradient of the electric field 
∇ Er = Er/l, where l is some scale length and (b) the radial 
electric field is zero in the core region, i.e. in a region 

r ≤ (a - l), where a is the minor radius (see Refs. [1,3-5]). 
The L-H transition as a bifurcation in the radial electric 
field was obtained as a zero-net radial current condition 
applied to edge non-ambipolar flows [1]. We introduce the 
dimensionless radial electric field X  as:  
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where iT is the temperature of ions, pTii eB/vm=ρθ  is 
the poloidal ion gyro-radius and rE  is the radial electric 

field. The ion loss cone flux )X(lc
iΓ  in the region 

θρ≤− ra (a is the minor radius) can represent the 
generation of particles from Coulomb collisions that 
escape into the scrape-off-layer (SOL) where they are 
absorbed by the limiter and/or by the divertor plates that 
balances the loss of trapped particles at the edge. A 
possible expression for the ion loss cone flux, denoted 

( ) )X(1lc
iΓ  is defined as [1]: 
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The alternative expression for )X(lc
iΓ , denoted by 

( ) )X(2lc
iΓ  is defined as (see Refs. [4, 6]): 
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The anomalous bipolar loss electron flux )X(anom
ie−Γ  is 

due to a direct edge loss by turbulent diffusion and its 
expression is given as: 
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In Eq. (5) eD  is the bipolar part of the electron 

effective diffusivity. The expression )X(c1 is defined as: 
 

( ) )X(FT
eB
qRkn2)X(Fn)X(c i

p

i
1

i
iii

2/1
1

∗
−

θ
− νε

≡ρνε=  (6) 

 
F (X) is a function to be defined below, in  represents the 
ion density while the parameter λ , which is related to the 
thermodynamic forces, is the control parameter, defined: 
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In Eq. (7) prime denotes the radial gradient and α  is a 

parameter close to unity. The flux )X(bv
iΓ , which is the 

ion bulk viscosity loss, is obtained from the general 
neoclassical formula for the radial flux [2].  
Particular expressions of )X(bv

iΓ  and of the impurity flux 
( )XimpΓ  will be defined later in specific subsections.  

 

 
 

Fig. 1. The normalized electric field as function of the 
control parameter for different values of 4c  and for fixed  

                  value of 6.02 =c  and 13 =c . 
 
3. The contribution of ( ) )X(1lc

iΓ  and )X(anom
ie−Γ  

 

We analyze the stationarity condition ( )0t
Er =∂
∂ , 

considering only the first two terms from Eq. (1) where 
( ) )X(1lc

iΓ  is given by Eq. (3). The radial electric field then 
results from the zero-net-current condition: 

 
( ) ( )X)X()X( anom
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i γ≡Γ=Γ − .  (8) 

In the later equation ( )Xγ  is the dimensionless particle 
flux. We assume that that coefficient Xcc)X(c 431 +=  
(or that )X(F  arising from a bounce averaging) is linear in 
the dimensionless radial electric field. Additional 
constraints 0c3 >  (to insure an inward flux when 0X = ) 
and 1X)c/c( 34 ≤  when both 4c  and X  are negative (to 
insure the inward flux for all values of X ) are introduced.  

The case 04 =c  was considered in [1]. The 
bifurcation equation is studied either by varying λ  with 

32 c/c  fixed or conversely. Obviously, no bifurcation 
appears whenλ  is kept fixed and 0c4 = . The equation 
leads to a bifurcation only when λ  is varied as considered 
in [1]. The behaviours of the normalized radial electric 
field and particle flux as functions of λ  are represented in 
Fig. 1 and Fig. 2 respectively, for different values of 4c  
and for fixed value of 6.0c2 =  and 1c3 = . The 
case 0c4 =  corresponds to the model of Ref. [1] (dotted 
line) for which the meso-phase (see Ref. [5]) is 
( ) 229.0original =λΔ  with [ ]824.1,595.1∈λ . 

 

 
 

Fig. 2. The normalized particle flux as function of the 
control parameter for different values of c4 and for fixed  

                      value of c2 = 0.6 and c3 = 1. 

 

For 2.0c4 =  the later is ( ) 247.0linear =λΔ  with 
[ ]935.1,688.1∈λ  and for 2.04 −=c  is ( ) 249.0linear =λΔ  

with [ ]737.1,488.1∈λ . A difference in the thickness of 
the meso-phase in the range of the control parameter is 
clearly observed as the coefficient 1c  is slightly varied 
with the radial electric field. 
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We now consider a different situation involving three 

mechanisms that are able to cause a bifurcation in the 
electric radial field: the ion collisional bulk viscosity flux 

)X(bv
iΓ  [7], the ion loss cone flux in the form given by 

Eq. (4) and the anomalous bipolar loss )X(anom
ie−Γ  given in 

Eq. (5). We consider the edge of the circular tokamak and 
a positive single-ion-species as component of the main 
plasma. In the collisional limit ( )1i ≥ν∗ , the ion bulk 
viscosity flux has the following expression [2]: 
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In Eq. (9) 0XX −=  is the ambipolar electric field, 
which gives a zero value to the radial ion particle flux. The 
following equation is obtained using the assumptions 

nnn ei ≡=  and TTT ei ≡= : 
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Fig. 3. The normalized radial electric field X is 
represented as a function of the control parameter λ  
for: 4i =ν∗ , 213.0=ε , 25.00 −=X  and 05.0d = . 
 

 
Fig. 4. Even the simple bifurcations disappear 

for 4.0d ≥  and 25.0X0 = . 

In Fig. 3 the normalized radial electric field X is 
represented as function of the control parameter λ ; for 
this case we used the effective frequency 4i =ν∗ , the 

inverse aspect ratio 213.0=ε , 05.0d 2/1
b

2
eD ==
εωρθ

 and 

25.00 −=X . In the collisional case ( )3i ≥ν∗ , the double 
hysteresis, which has the same characteristic feature as in 
the original model given in [3], disappears for positive 
values of λ . There is thus only one bifurcation for the 
normalized radial electric field and for the particle flux. 
For  4.0d ≥  and 25.0X0 = , the simple bifurcations of 
the radial electric field and of the particle flux disappear 
(see Fig. 4). 

 
5. Non-stationary case: the contribution of  
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A time-behaviour of the radial electric field is 
considered assuming a given time-dependency for the ion 
temperature: 

( ) [ ] ( ).tGTttanh1TtT i0i0i ≡δη+=    (11) 
 
In Eq. (11) [ ] 1s200,5 −∈δ . It is also assumed that the 

electron temperature does not vary in time and is given 
by .K10TT 6

i0e == The poloidal ion gyro-radius becomes: 
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The following parameters are used in this 

model: 122
e sm105D −−⋅= , 319

e m10n −= , ( ) 1XF ≈ , 

2i =ν∗ , T10B 1
P

−= , 1228
0 NmC10 −−−

⊥ =εε , 
m3R = , 3/1=ε , 3q = . The perpendicular dielectric 

constant related to the poloidal flow is 
( ) 2

A
22 v/q21c1 ++=ε⊥  while q  is the safety factor 

profile, c  is the velocity of light, 0iiA nm/Bv μ=  is 
the Alfven speed (B is the magnitude of the magnetic 
field). 
We consider also the following spatial profiles for the 
temperature and for the number density for electrons [8]: 
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Choosing 1≈α  and 98.0a/r =  and considering that 

the electron temperature does not vary in time, the 
complete expression for λ  is: 

 

( )
( )

( ) ( )tGtG
T

km2
aeB

T16
t 2/1

0
2/1

2/1

i0

i

P

e0
2

a
r

a
r

λ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛⎟
⎠
⎞⎜

⎝
⎛ −

=λ       (14) 

 
The dimensionless radial electric field X  becomes: 
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For the specific parameters used in our paper we 

take: 14 mV1055.1b −−×≈ and 3
0 103 −×=λ .  

In this section the time behaviour of the radial electric 
field is considered assuming the time-dependency for the 
ion temperature and using the following fluxes: ( )Xbv

iΓ  in 
the collisional case, the anomalous bipolar loss )X(anom

ie−Γ , 
the ion loss flux and the impurity flux. The later has the 
expression [9]: 
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M is the mass number of an impurity ion, im  is the mass 
number of the main ions, Z  is the charge number of 
impurities, f is the percent of the expelled ions of impurity 
from plasma, 

i

imp

n
n

=β  and the other parameters are 

already defined. The first term denotes an inward pinch 
due to collisions with bulk ions, and the second term 
shows centrifugal force; the latter can be outward. The 
equation of evolution for the radial electric field becomes: 
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The coefficients kD  (k=1-5) are given as: 
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Fig. 5. The evolution of the radial electric field 
 

In Fig. 5 it is shown the evolution in time of the 
solution of Eq. (17) for different parameters ηand values 
of δ . The initial condition is: 0t 0 =  and 1)t(X 0 = . The 
other parameters are: ,10/3=β  ,2i =ν∗ ,3/1=ε  

.1p =   
It can be seen in Fig. 5, that the first decrease of the 

radial electric field is followed by an intermediate 

decreasing region before the reaching of the stationary 
regime in a region of negative values. It is obvious that the 
type of the heating dictates the stationary value for the 
radial electric field: the absolute stationary value of the 
radial electric field is increasing whenη is increasing. The 
transitory regime behaves only in the time interval 

]1,10[t 4−∈  sec. It was also observed that the time 
behaviour of the radial electric field is practically 
determined mainly by the second and the last term from 
Eq. (17). By the other hand the expelled impurity is not 
very important in the determination of the saturation value 
of the radial electric field. 
 

6. Conclusions 
 
The bifurcations of the normalized radial electric field 

and the particle flux are obtained as a balance of a linearly 
modulated ion loss cone flux and the anomalous electron 
loss. Small differences in the thickness of the meso-phase 
and in the range of values of the control parameter for the 
normalized radial electric field and the particle flux in the 
region of bifurcation were observed. The range of values 
of the control parameter leading to a bifurcation is 
obtained. The linear dependence of F  on the radial electric 
field maintains the existence of a critical value cλ of the 
control parameter. At this value, a transition from the 
branch of large flux (L-confinement) to that of small flux 
(H-confinement) occurs. The disappearance of the double 
hysteresis for an effective frequency 3i ≥ν∗  and 

05.0=d  is observed in comparison with the model 
studied in [3]; a simple bifurcation, however, is present. 
The time behaviour of the electric field was studied for 
different heating regimes and transitory regimes are found 
for different heating types. 

 
Acknowledgments 
 
For two of us (M.N. and I.P.) this work was supported 

by Association EURATOM-MEdC Romania. 
 
References 

 
[1] S.-I. Itoh, K. Itoh - Phys. Rev. Lett.  60, 2276 (1988). 
[2] K. Itoh, S.-I. Itoh, A. Fukuyama - Transport and 

Structural Formation in Plasmas, IOP Publishing Ltd. 
(1999). 

[3] S. Toda, M. Yagi, S.-I. Itoh, A. Fukuyama, K. Itoh- 
Plasma Phys. Control. Fusion 38, 1337 (1996). 

[4] K.C. Shaing, Jr.E.C. Crume, W.A. Houlberg - Phys. 
Fluids B 2, 1492 (1990). 

[5] S. Toda, S. -I. Itoh, M. Yagi, Y. Miura - Plasma Phys. 
Control. Fusion 39, 301 (1997). 

[6] S. Toda, S.-I. Itoh, M. Yagi, A. Fukuyama, K. Itoh - 
Plasma Phys. Contr. Fusion 38, 1337 (1996). 

[7] K. Itoh, S.-I. Itoh - Plasma Phys. Control. Fusion 38, 1 
(1996). 

[8] J.H. Misguich, B. Weyssow - Euratom-CEA Internal 
Report No. NT 8Φ , Cadarache, 1989. 

[9] T. Ohkawa - Comments Plasma Phys. Control. Fusion 
16, 1 (1994). 

 
____________________________ 
*Corresponding author: mnegrea@yahoo.com 


